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/ Methods for Scaling to Doubly Stochastic Form,

) A. B.NpParlett! end T [ Landis? i
/ﬂ) f /L /’/ } // ‘/
ABSTRACT

New methods for scaling square, nonnegative matrices to dou-
bly stochastic form are described. A generalized version of the
convergence theorem in SINKEORN and KNOPP [1967] is proved
and applied to show convergence for these new methods. Tests
indicate that one of the new methods has significantly better aver-
age and worst-case behavior than the Sinkhorn,/Knopp method; for
one of the 3x3 examples in MARSEALL and CLKIN [1968], SK
requires 130 times as many operations as the new algorithm to
achieve row and coiumn sums ! = 1075,

1. Introduction.

We seek an algorithm which will find a pair of cositive diagonal matrices
and £ for a given square nonnegative matrix, A, such that DAF is doubly
stochastic--or determine that such 2 pair dees not exist.

A nonnegative n Xn matrix 4 is said to have support if it possesses a posi-
tive diagonal; 4 has total support if A # 0 and every positive entry in A lies on a
positive diagonal. A is fully indecompasable if it is impossible to find permuta-
tion matrices P and & so that:

(1.1) PAQ= [;‘;28]

with A; square.
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Three procedures for computing D and £, when they exist, have appeared

in the literature: (1) minimize z‘4y subject to the constraints
Tz =7]w =1 (2) minimize

i=1

n
,
|

k=1

1l
I;=l

[z za) =

iy 2
Ty

subject to the constraints

z.>0 k=1 - n and ixk=1
k=1
and (3) compute D and £ iteratively by alternately normalizing all rows and all
columns in 4. The first method is due to MARSFALL and OLKIN [1968]; the
second is described in DJOKVIC [1970]. In each case, the minimization problem
is shown to have a solution when A is fully indecomposable. The third algorithm
was first described by DEMING and STEPEAN [1940] who called it the "lterative
Proportional Fitting Procedure". It was rediscovered by SINKEORN
[1962,1964,1966,1967), and, SINKEORN and KXOPP [1987] proved that D and £
exist so that J A £ is doubly stochastic if and only if A pcssesses total support.
Further, they showed that in such a case, the iteration converges to a solution
pair D and £. BRUALDI, PARTER, and SCENEIDER {1986] independently proved
the existence of D and £ when A is a direct sum of fully indecomposable
matrices by showing that its corresponding Menon operator (MENON [1967]) has
a fixed point. Finally, SINKEORN [1966] showed that the Sinkhorn/Knopp

method converges geometrically for positive starting matrices.

The following result can be applied to show that a nonnegative matrix has

total support if and only if it is a direct sum of fully indecomposable matrices:

The Frobenius —Konig Theorem (MARCUS and MINC [1964],p 97)

A nonnegative n xn matrix without support contains an s xt zero subma-

trix where:

s+t=n+1
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3.

In this paper we describe three new iterative procedures for scaiing nonne-
gative matrices to doubly stochastic form. We prove a generalized version of the
convergence theorem in SINKEORN and KNOPP [1967] and apply it to show that

for starting matrices with total support, these new iterations converge to diago-

nally equivalent limits which are multiples of doubly stochastic matrices. In the
final--and most interesting--section, we present results of tests comparing our
new methods to the Sinkhorn/Knopp method (SK). One of the new algorthms,
EQ. exhibited significantly better average and worst-case behavior than SK: for
some test matrices, SK required 130 times as maan operations as EQ (where an
operation is a multiply or a divide) and examples for which EQ requires more
than ten times as many operations as SK are rare.

Techniques for scaling to doubly stochastic form have a number of applica-
tions. The problem that launched Sinkhorn's research was estimating the tran-

sition matrix in a Markov chain. MARSHALL and OLKIN [1979] contains refer-

ences for other statistical applications. They can be applied to equillibrate a
general matrix with respect to any p-norm, p # =; one of us has used EQ to test
for diagonal equivalence to orthegenal form by equillibrating with resgect Lo the
2-norm. Finally, we remark that doubly stochastic matrices nossess the follow-
ing interesting properties: (1) They are "perfectly balenced” with respect to
the 1-norm ( see PARLETT and REINSCH [19862]); (2) Their p-norms are unity for
all p <= (see STOER and WITZGALL [1962]); and (3) Their inverses--if they exist-
have row and column sums =qual to unity (though the inverse of a doubly sto-

chastic matrix is doubly stochastic only for permutation matrices).
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2. Algorithms

In this section, we will describe three iterative procedures for scaling non-
negative matrices to doubly stochastic form. In section three we show that
when they are applied to a matrix with total support, the result is a sequence of

iteration matrices converging to a multiple of a doubly stochastic matrix.

Our first algorithm, DEV, was motivated by the desire to have an algorithm
that would modify a single row or column-—ieaving the remainder of the matrix
unchanged—at each iterative step. There is a natural way to select the row or
column to be changed: choose one whose sum deviates maximally from the
mean of the row sums (which is also the mean of the column sums). This
approach is reasonable, because matrices with equal row and column sums are
scalar multiples of doubly stochastic matrices. For the same reason, the
natural change is to multiply entries in the selected row or column by a factor

chosen so that its new sum will be the new mean of row sums.

Algorithm 1 (calied DEV, for deviation reduction)

Given 4 = A® an n x n matrix:

(1) Compute row and column sums for A:

I
-
3

Ty & ia—ul-
i=l

c; + 121 a; J=1l..mn

Compute the mean, u, of row sums in A:

e -71‘_ [él n ]

(2) Find indices p and g so that

”‘)
!
®
n

max ', - u!
13

and

Cq ~ M ! =m)ax'c, -,

It jr, ~u. <tol wand 'c; ~ u. <tol u go to step 5.
P g T H
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If cgq — > 7, —u gotostep 4

(3) Calculate the mean [i, of row sums other than Tpl

(n )

[2 Ty

pe o
n-1

o

i3
<

3

Scale row p to ji:

"mﬁ““-pj';’:— j=L - n

Update row and column sums for A:

Go to step 2.

(4) Calculate the mean. fi, of column sums other than og:

Scale column q to f:
a_iq - %.E'— 1= 1' IR
¢y

Update row and column sums for 4:

Cq « K
T, « T+ £ _ 1]-(1.,4
Cq
Go to step 2.
(5) Normalize:
0y ¢ ay i =L n
M’

Exit.

PR T WPy




Remarks

Note that step 3 is equivalent to premultiplying matrix 4 by a positive diag-
onal matrix:

D =diag (2, - .dy)
where
_ lifi=
= gpiich
s

and step 4 is equivalent to post multiplying matrix 4 by a positive diagonal
matrix:

E = diag(e,, - - .en)
where
=1 ifj#q
~ eJ _p__ 1fJ=q
]

We say that a row and column pair in a nonnegative matrix is balanced
{with respect to the l-norm) if they have equal sums. Obviously, all row and
column sums in a multiple of a doubly stochastic matrix are balanced. A second
approach to scaling to doubly stochastic form, then, is to find a row and a
column whose sums have maximal difference and to scale the matrix so that

their sums are equal. This is the approach taken by our second algori'thm.

Algorithm 2 (called BAL, for balance)
Given 4 = 49 an nxn nonnegative matrix:

(1) Compute row and column sums for A:

T+ 2011 i=1 - n
i=1

and the mean of row sums:

—

v s 4



-7
(2) Find indices p and g so that:
ITp = cq1 = max ro=cj
If frg —cq: < utol gotostepb
(3) Balance row p and column g
Multiply entries in row p by:
2
f = {cq ~ %
Tp = COpq
and multiply entries in column q by f .
(4) Update row and column sums:
et (fTl-1)ayi=L - n

2
™ * [(Tp ~ apq )eq ""'pq)} + Opg

%q P
c; « e+ (f-)ay J=1 n
1 n
b nﬁ;n
Go to step 2.
(5) Normalize:
& « oy 1.j =1, n

Exit.

Note that step 3 is equivalent to forming the product J 4 £ where:

D = diag(d,, - .dy)
_Loifi#
%=f iizp
E = diag{e, - .dy)

e; =1, ifj#gq,




=f7hL ifj=gq

Now for the third method. When testing DEV we found cases where a
sequence of 10 or more iterations were alternately scaling the same row and the
same column. Our third algorithm is a variant of DEV that avoids this problem.

It records the last row and last column scaled; when it detects a repeat, it per-

forms a balancing step.

Algorithm 3 {called EQ, for equalize)
Given 4 = A9 an nxn nonnegative matrix:

(1) Initialize:

lastr « O
ldstc « O
n
r“-zaﬁ i =1, n
i=1
n\
G ¢ L3y 71 m
i=l
1
Ko« n_LS‘ t]

(2) Find indices p and q so that:
!r,,—;r=miatx‘rt-—/.;~ i

]cq—#lzm?x!cj—ui ’

If ‘7, —ui <putol and ¢y — i < w-tol gotostep 6.
If 7p =i < .cq — 4 gOtostep 4.
(3) If p = lastr go to step 5. Otherwise. calculate the mean, @, of row sums

other than Tp!

e
L3
Q-

and scale row p to a:




-

- TP -

- -

(4)

(5)

o]
[
+
‘_.Q
+
I
|
—
—_——
f
~
i
e
3

lastr « p

Go to step 2.

If g = lastc go to step 5. Otherwise, calculate the mean, ., of column sums

other than gt

- 1 {'1
oo n-1 bt CJ-

j =
g
wnd scale colurnn q to f:
I .
I el
Update row and column sums:
cqg « B
r,*—rz+[-#—-~l}z=l n
Cq
Moe D
lastc « g

Go to step 2.

Balance row lastr and column lastc { for convenience let k =lastr and

l=lastc):

Multiply entries in row k by:

T SR e
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G, <« 2%, f J=1. - .n
Multiply entries in column | by f 7%
gy < ay fY i=1 - n
Update row and column sums:
R er+(f=-la i=1 - n
Update row and column sums:

mnoern+(fl-Da i=1, - n
/2
Te © (Tk-akl)(cl—ald)} + Ay

Sy ¢ T

;g « ¢+ {(f -~y =1 - .n

Go to 2.

(8) Normalize:

Exit.

Notation

To simplify the descriptions of the algorithms we have omitted program-
ming details. In particular, we have assumed that all scaling and balancing
operations are carried out explicitly by modifying entries in matrix 4. In the
next section, it will be convenient to assume that the iterations are carried out
implicitly by changing entries in a pair of diagonal matrices D and £.

Each algorithm produces a sequence of iteration matrices which are diago-

nally equivalent to the starting matrix A = A4{©:

(2.1) Ak) = ple) 4 gle) o =1 2,

D%®) = diag (d{), - - 4%

toe s T S ke A~ _'._j

ot

¢ el .

L AR

N T
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E® = giag (e ), enth)

and we set D® = g0 = s

We introduce the following notation;

A = [a_‘.'ju}
(So, for example, af*) = ¢*)q, e %)

-

1

3 ot
j=t

{
o]

() - *)
¢ = Y ay
!

C

1

and

M .’.‘(k )

1]
3|
7=

-
n
-
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3. Convergence
In this section, we will prove that when a starting matrix has total support
each of the algorithms described in section 2 produces a sequence of iteration
matrices which converges to a diagonally equivalent, doubly stochastic limit.
SINKEORN and KNOPP [1967] showed that when SK is applied to an nxn
nonnegative starting matrix A'® = 4 possessing nonzero row and column sums,

the result is a sequence of iteration matriees as in (2.1) with the following pro-

perties:
(P1) The sequence { s )c=12 . is monotonically increasing where:
. = T 0, k) s =1
(3.1) se = | de] k=12
i=1
s
(P2)If lim ——=1 thenforij = 1, n:
ko= Sga,

lim r®) = 1

~

(k+1)

P a

lim cf%) = 1
koo

gik+])
lim —4-—=1
k »oo ej\k)

(P3) With the k* mean of row sums, y,, defined by (2.3)

p = 1 k=12

Algorithms which, given an nxn nonnegative starting matrix, A, produce a
sequence of iteration matrices as in (2.1) satsifying (P1), (P2), and (P3), will be
called "diagonal product increasing” (DPI). The following result is a simple gen-
eralization of the convergence theorem in SINKEORN and KNOPP [1967].

ek M e e e ket o ¥ b et 4 o
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Theorem 1
Given a sequence (2.1) of diagonal equivalents for 4 satisfying (P1), (P2), and
(P3}):

[1] If A has support then ’l‘im A®) exists and is doubly stochastic.

[2] If A has total support then the limit in [1] is diagonally equivalent to A.

Before proving the theorem we state and prove a corollary:

Corollary

[1] If A is diagonally equivalent to a doubly stochastic matrix, §, then:

S = lim A%)

k ~wo

[2] 1f A has support and is not diagonally equivalent to a doubly stochastic
matrix, then for each pair of indices (i,j) such that a,; does not

lie on a positive diagonal:
lim ai*) = 0
k +» 01]

Proof of Corollary:

(1) By Birkhoil's I'heorem (BIRKEOVF [19468]) the sel of n xn doubly stochastic
matrices is the convex hull of the set of n xn permutation matrices.
Therefore, S and its diagonal equivalent, A, have total support. Now the

theorem implies that }‘im A% s doubly stochastic and diagonally equivalent
to 4. Since doubly stochastic equivalents are unique, {see SINKEORN and

KNOPP [1967]):

lim 4%) = 5
i oo

(2) By the theorem, ’I‘im A®) s doubly stochastic, so it has total support. and
E.n.} a‘»,(") = 0 whenever a;; does not lie on a positive diagonal. ®

Note that matrices without support are not covered by the preceding
theorem or its corollary. Such matrices are always singular, and KARAN [private

communication] has shown that the sequence of iteration matrices ( A*) ) pro-

duced by SK cycles for such a starting matrix.
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Proof of Theorem 1:

We will need the following well known result:

Lemma 1 (The Arithmetic/ Geometric ‘fean [negquality)

If zz=0 for i =1, - - ,n then:
n n
oo | 20
1=1
Tz <
€L=l n
with equality only whenz,=2z;= -+ =z,
(1): (P1) implies (Sg)k=12 . IS monotonically increasing. Since A has support.,
a permutation, g, of {1, - -+ ,n { exists such that:
u,,-.,,(l)fizl. oan

is a positive diagonai in A, Lol 4 = LN gy g0y ). Then
1

=

Al ’k\ n\ 'k —
Az = Yrkli=n
1

1

n\ ey (N I I
2 e as Y A g =
t=1 1

i=1

-
it

=1

-

(Property {(P3) is used for the right hand equality) By the arithmelic, geometric

inequality:
Se = :EI d®ek) <a™m
i=1

and is bounded. Therefore by (P1)
k k=12,

lims, = £ >0

& voo

exists, and

Y
lim —— = 1
k<= Sk
By (P2):
{k+1) e};k»l)
LXEW=1 and BEW:I

By (P3), since the A%) are nonnegative, no entry aff' can be larger ‘han n.

Therefore, for each index pair (i,j) the sequence (a.\g‘") is Cauchy, and
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lim A®) = 4

k v

exists. Since the row and column sums in A®™) must be:

lim r®) == 4=, n
Li{!: cfl=c j=1 - n

(P2) implies that A®™ is doubly stochastic.

(2): To prove the second half of the theorem we will need the following lemma
which is paraphrased from SINKEORN and KNOPP {1967], p. 345.

Lemma 2
If A is a nonnegative matrix with total support, (/%)) and (y#*)) are positive
sequencesfori =1, -+ mandj =1, -+ ,n and:

E{E x‘(k)y}k) = L"J >0

for each index pair (i.j) such that a, # 0, then there exist positive

sequences { £\*)) and (37,-(")) with posiuive iimits suci that:

=) ='k) i
X gt = 2%y,

*' foralii,j, and k

Now for the proof. From part (1), we know that LLEE agt) = ’1‘152 d(k)e k) a,;
exists for any i and 7. 1f a;; # O then LLT., SAL) e](") exists.'l,'sing (P1) we show that
this limit is positive.

If @;; # 0, it lies on a positive diagonal in A, because A has total support. Let

o be a permutation of {1,...,n{ such that:

o (i) =j
QGoqy >0 =1, o
By (P1):
dt""ef""ijll a®ef) =5 =5, k=12
i
(3.2) ¥ efd) > s,

A L
=]

i

. A _Sudd. .

P ome L
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Let 2 = min ["’u’ o # 0}. Then:
L)

n n n
k), | )k O
a | Y a4 )eém < Y gFled), Qo) € T ) = n
=1 = i1
(X8 Lo
SEI Py
aly, 4 edf)
1=
i~
< N
n-1 n-1

Now apply the arithmetic/geometric mean inequality:

or

(3.3)

n
1] a®eff)
bt

Combining (3.2) and (3.3):

(3.4)

which shows that ET, d,»(")ej(") > 0 whenever a;; # 0. Now we can apply lemma 2

to see that positive sequences {E}")] and [éj(")] with positive limits exist so that :

Set

and

then

_[n—l
Sn»a ‘
n -1

-1 (’ 1] yn-1
¢ n - ol
[Prawem | = {*——n*—ﬁ
=1 . }
"tm
{ 1 ]‘n—l
die) e k) > sl[ — 2 >0

¥ &) = 4V el for each 1.5, and k

Dik) = diag ( iﬁ(k))

E® = diag (&)

lim D%} = pi* and

k -w

lim
k o+

F) = e

™

& sttt s tomnatinnnlliie . i Nl o i am Y A s o
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exist. Taking limits on both sides of
D) 4 £ = 4lk)
we obtain
D= A E(=)} = Al=) "
Naturally, the Sinkhorn/Knopp method is product increasing; in the next
theorem, we will show that normalized versions of DEV, BAL, and EQ, are too.

Here is another example of a DP! algorithm defined for irreducible, nonnegative

matrices:
Algorithm

At each step: Normalize the rows by finding Y, a positive diagonal matrix, so
that ¥ 4%) has row sums 1. Then normalize the columns by a diagonal similarity

transform defined as follows:

Let z =(x;, - - - ,x,) be a left Perron vector for Y Al%):
xYA®) =1 x
and let X = diag(z,. - - - .z,). Then
Akl = [x )iA(")X“
has column sums 1 because
(L - AR = (1, 1)

(Note that the similarity transform leaves diagonal products unchanged)

Next we apply Theorem 1 to show that the algorithms described in section 2

are convergent for starting matrices with total support.

Theorem 2

Suppose that the sequence of iteration matrices
AR = pEl g gk) =1, - n

results from the application of DEV, BAL, or EQ, to 4 = A©); then if A has

(k)
total support, ’l‘im“:‘ is doubly stochastic and diagonally equivalent to A.
M

froof

We prove Theorem 2 by showing that the sequence of normalized iteration
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matrices:

(3.5) Ak = 4% D®) 4 gle) = [—1—— D(’"]A E®) k=12,
K M ‘

satisfies (P1), (P2), and (P3).
(P3) is obviously satisfied by (3.5). Note that:

Bl
S = H[L;—d‘(k)] ei(k)

n

= _ln__n d®le®) k=12 -
i i

i=1

DEV:
Suppose that at step k+1 row p is scaled to the mean of the other row sums,

Z. After the scaling, & is the mean of row sums, that is:
R= e

and in this case:

n v
T gl e feen

(o o [Llsenl”
' Sk 1/ pe | B k), (k)
1] a*ef
i=1

(17 N-Icﬂ]n Hi v
1/ e J Tp

( n-1

e " e
Hi 1 7p

Since w4, is the mean of row sums other than 7, in A%), and w; is the mean of

all row sums:

T + (N = 1),
n

4
(3.7) 1-{1 sz Den )y
T M M

= Mo
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By the arithmetic,/geometric mean inequality:

Tp o <1
M

n-—-1
ik_"!_: #k . #_k.> 1
Sk M+ L

The above arguement can be repeated for a column scaling at step {(k+1), and
(P1) holds. Next define sequences:

Therefore:

k) D=1 ..
(3.8) [zl\ ]k s i=1, n
by
Y
r
#L- if i=p and at step (k+1) row p is scaled
k

to the mean of the other row sums

c
zfk+) = #L if i=q and at step (k+1) column q is scaled
k
1
to the mean of the other colurmn sums !
Beer otherwise
M

By (3.7), i—i zi¥) = 1 for each k. Using the arithmetic/geometric mean

=1

inequality it can be shown that from:

s
lim 7]z = lim =L = 1

k= ko Sp
follows:
Lig_x'x‘(k)n i=1, - n
Since
4E Y e M

—_—T—= — 0T — = =
d-,‘k) M +1 d-l‘k) Tp M +1 s
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(‘i‘i(kvl) _ 1 ‘ )
&i(k) = D or some
and similarly
(ke +1)
e
%;)—=1 or B2 iz n
e/ cq
_ 1
=1 or m for some [
it follows that:
die+1) ek +D)
im FiD) = lim ) =1 i=1

At each step,

DEV selects p or q so that

[rp——lj or iEL-l

Hi Hi
is maximal. It follows that fori,j =1, - n:
rik) ik
lim = lim =1

ke Ll ko My

Therefore (P2) holds for the sequence (3.5) produced by DEV.

BAL:

Suppose that at step (k+1) BAL balances row p and column q. Let:

In this case:

k) —~ L lk) _ k)
z®) = 1) - agy

Y= oft) = off

Sk

(o) S [Llmen) ! f-lz[m

where

so to show that s, ,, = s,, we must show that u,,; S (.

REY M+

‘ /2
;= [z\k)
o
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If A% is doubly stochastic for some k, then A%®) = 4k+0 = ... and the

theorem is satisfied. Otherwise, for each k£, we may assume that
(3.10) LTS o) = 2R~ y® %0

With this assumption, if z®) = 0 or y*’ = 0 then 4 cannot have total support—a
contradiction. Tnerefore, z\¥) # 0 and y*) # 0, and the denominators for f and

f!are never 0.

Entries in A%®) sum to:

et
i=1 tJ=1

(3.11) 2 rik) = e‘ afe)

i

i‘: 2B+ z®) 4 y ) 4 200
e
J*q

After the balancing step, entries in A%**1 sum to:

n (.1 ) |r \||__,"7
k1) o 1A ISR 2 A 3 kY
(a12) YRR =V gl l 2 iyt + a8
i=1 =
=
\‘ v J
SO
n
Z 1',.("”)
i=1
(3.13) foger =

n

P e 4 [ZW - %(m + ym]]
=1

n

2VEIGE - [z0) 4 )

n

= e +

By the arithmetic/geometric mean inequality
2VEIGE < 20 4 y®)

and therefore

(3.14) Mg+ 1S M

n
ﬁ—] > 1 and sg,.; = s, ie. (P1) is satisfled.
M+t

s
By (3.9), Kl
Sk




o
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4
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Suppose that: o
T
s,
(3.15) m =L = | ]
ik »® Sk
then by (3.9) and (3.13): {
M f
Mo + 2\/:\‘7!’\;5 -— [z(k) + y(k)]
(3.18) 1= lim
k= n
= lim L S
Ev= (n ) + 2V ZFYE) - (z8) 4 ik
n
=lim 1l ,
k v 1+ 2V Z‘Ejj ®) jzxk) + L\k))
n'/‘Lk

which implies that

[2\/"’“)—"”1: 7T~ (2 4 y:k)]

im =0
k> T L
2 7 k) (k)
lim| 2 CAMEY. ARSI P Al =0
ke M M Hi K

It follows from the arithmetic/geometric mean inequality, that this is impossible

unless: .
|
&) k) '
im — - X _-p >
kv K t
and ;
rik) ok
lim |max  ————— 4+—1{ =0
k 2o g He i

)
is 1, imply-

The mean of the row sums and the mean of the column sums in ,u
k

ing:
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Equation (3.4) in the proof of Theorem ! holds whenever (P1) and (P3) are

satisfied, and for each index pair (ij) such that a@;; # O, the sequence

b
Me Je =12

. . z
is bounded away from zero. Therefore, the sequences [

(k)

i

)
are
23

bounded away from zero, because z*) # 0 and y*) # Q for each k. We have:

{k) (k)

"/ U <

(3.17) lim T.‘_.k_: lim z_,ﬁ._—_ 1
ke YO e R Y

Finally, for each i,j, and k:

a‘(kn) _ d‘(kﬂ) o o ai(ke—l) _ ) 1A
A Besr di®) Me 1 A M ()
efk+n . eferl [z(k)]%
e T e AN

gge+n g kD)

3. li — = i . =
(3.18) lim Fg) ET. e,—\") 1

for each i and j, and (P2) is satisfied.
EQ:
Each step of EQ is a step of DEV or a balancing step. The arguements above

for DEV and BAL show that for each k., s,,; = 5;, ie. that (P1) holds. Consider 4

the sequence (3.8), and its subsequence

k)
[x‘ ]*'=P1-Pz-

where at steps k' = p,.pa, - EQ scaled a row or column to the mean of the
‘& other row or column sums. This sequence must be infinite--because lastr and
[ lastc are set to 0 after each balancing step--and the arguement for DEV can be
i- repeated to show that:

(3.18) fori,j =1, - .n
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gk +1)

ilﬂ—T:l 1 =1, T

I
ei‘k +1)

lim -
kv efk
ot
lim —
kraw g

il
-

- Ck’
lim —=—
kv [l

"
-

Next consider the subsequence

")
T e =q,90

where at steps £” = g,,9.. - - - EQ balanced a row and cclumn. If this sequence
is infinite, the arguements for BAL (Equations (3.15)-(3.18) ) can be repeated to

s
show that when lim —=*L = 1

koo S

’}:l’llll ___e.;("") =1

E,;(k”) g lk+1)

= lim — =1
k k

k> d_‘\ ) k oo elx )

In particular, limA®*) exists, and its row and column sums are:
i oo

i) i)
lim = lim —=1
ke e ke U
(k) (k)
[ o]
lim ~L—= lim +—=1

koo [y ke [
{P3) holds for the sequence (3.5) produced by £EQ. ©

It is possible to show that each of the sequences Ed.‘“”} and

s PR,

(e}")],i,j =1, - - .n, produced by SK and BAL are Cauchy. We beiteve the

same to be true for DEV and EQ but are unable to prove it.
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4. Test Results

We ran comparison tests of the aigorithms described in this paper and the
Sinkhorn,’Knopp method on a collection of 50 10x 10 or smaller matrices.
These tests were run on a VAX 11,7780 at UC, Berkeley, with 7 significant digits in
single precision and 16 digits in double precision. Sumns were accurnulated in

double precision.

For convergence to “tol” accuracy, we required that all row and column
sums deviate from the mean, u, by less than tol-u. So. in the normalized

matrices, row and column sums could not deviate from ! by more than toi.
The examples in this section were selected to illustrate the following points:

(1) EQ exhibited significantly better average and worst-case behavier than SK.
On our test bed, for convergence to tol = 1077, the ratio of total SK opera-
tions to total EQ operations varied from a low of 1,2 to a high of more than
130.

(2) We found striking examples where EQ was significantly faster than DEV, BAL,
or SK. Since each iteration by EQ scaled 2 row or co'imn--like DEV--or bal-
anced a row and column pair--like BAL--there is evidence that some
mechanism is at work which cnables g 1o chocse the might operaticn ot th.
right time.

To facilitate comparing DEV, BAL, and EQ, we counted their "steps” in the
following way: each scaling of a row or column counted as 1 step, and each
balancing of a row,/column pair counted as two steps. In this way, the operation
cost (where an operation is a multiplication or division) was the same for each

step of each of the three algerithms.

To facilitate comparing EQ and SK we computed the approximate ratio of

total operations performed by EQ to total operations performed by SK.

These first four examples were the test matrices in MARSEALL and OLKIN
[1968]:

{
10*10%102 (1021 o
100 1 1 10210° 1
‘102 1 1 0 10°10°
10%102 ¢ 10041 ¢
10010% 1 104108 1
| 0 1 102 | © 10*10*

-~

.
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STEPS TO CONVERGENCE FOR MATRIX 4

OPERATIONS)

, < SK
TOL DEV BAL EQ  SK | Fooprrarions)

1072 2 18 2 1 .8
103 2 20 2 1 .9
1074 2 28 2 1 .9
1075 2 32 2 1 .9

STEPS TO CONVERGENCE FORMATRIX £

TOL DEV BAL EQ SK OPERATIONS )

921
S

EQ OPERATIONS |
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STEPS TO CONVERGENCE FOR MATRIX C

, SK OPERATIONS )
TOL  DEV BAL EQ  SK EQ OPERATIONS)

102 24 18 11 10 1.7
10-2 80 24 19 307 29.8
107* 1858 30 38 1092 53.1
1075 3281 34 49 1899 71.5

STEPS TO CONVERGENCE FOR MATRIX D

SK OPERATIONS)

TOL DEV BAL EQ SK

EQ OPERATIONS |
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Our next examples, R and S, are (5 x 5) matrices. They illustrate the curi-

ous fact mentioned in (2) above.

STEPS TO CONVERGENCE I'OR MATRIX R

{ sk oPERATIONS)
£Q OPERATIONS )

TOL DEV  BAL EQ SK

102 10 14 9 1 4
102 115 28 31 214 24.4
10™* 1882 2474 51 630 43.6

105 3912 4086 68 10687 55.4
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400 1 1
18 0 1

S = 1 1120 O

STEPS TO CONVERGENCE FOR MATRIX S

TOL DEV BAL EQ SK SK OPERATIONS)

EQ OPERATIONS ]
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Our final five examples are (10 x 10) upper Fessenberg matrices:

= (hy) where n, = [0 87iot
Ha, A3, and Ay, each differ from A, in a single entry:
the (1,1) entry in A, is 100
the (1,2) entry in H3is 100
the (1,3) entry in H, is 100
Hs is the result of reptacing all diagonal entries in 4, by 100.

Here is a summary of the resuits for tof = 10~5

TS LR

STEPS TO CONVERGENCE FOR MATRICES #, ¢ =1, - - 5

| - [ sk oPERATIONS)
MATRIX DEV BAL EQ  SK | £Q OPERATIONS

H, 812 748 812 55 6
H, 873 926 717 72 .8
Hy 925 952 775 71 7 |
H, 953 948 921 71 8 ‘
Hy 14476 17456 917 1004 8.9
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Appendix: Sample Iteration matrices for EQ and SK

The following pages contain sample iteration matrices for EQ and SK when
applied to matrices C and D. Normalized iteration matrices, DAE, are printed
with their row and column sums and deviations.
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